Strontium isotopes (87Sr/86Sr) are useful in the earth sciences (e.g. recognising geological provinces, studying geological processes) as well in archaeological (e.g. informing on past human migrations), palaeontological/ecological (e.g. investigating extinct and extant taxa’s dietary range and migrations) and forensic (e.g. validating the origin of drinks and foodstuffs) sciences. Recently, Geoscience Australia and the University of Wollongong have teamed up to determine 87Sr/86Sr ratios in fluvial sediments selected mostly from the low-density National Geochemical Survey of Australia (NGSA; www.ga.gov.au/ngsa). The present study targeted the Yilgarn geological region in southwestern Australia. The samples were mostly taken from a depth of ~60-80 cm (Bottom Outlet Sediments, BOS) in floodplain deposits at or near the outlet of large catchments (drainage basins). A small number of surface (0-10 cm) samples (Top Outlet Sediments, TOS) were also included in the study. For all, a coarse grain-size fraction (<2 mm) was air-dried, sieved, milled then digested (hydrofluoric acid + nitric acid followed by aqua regia) to release total strontium. Overall, 107 NGSA BOS < 2 mm and 13 NGSA TOS < 2 mm were analysed for Sr isotopes. Given that there are ~10 % field duplicates in the NGSA, all those samples originate from within 97 NGSA catchments, which together cover 533 000 km2 of southwestern Australia. Preliminary results for the BOS samples demonstrate a wide range of strontium isotopic values (0.7152 < 87Sr/86Sr 100 km) patterns that appear to be consistent, in many places, with surface geology, regolith/soil type and/or nearby outcropping bedrock. For instance, catchments in the western and central Yilgarn dominated by felsic intrusive basement geology have radiogenic 87Sr/86Sr signatures in the floodplain sediments consistent with published whole-rock data. Similarly, unradiogenic signatures in sediments in the eastern Yilgarn are in agreement with published whole-rock data. Our results to-date indicate that incorporating soil/regolith strontium isotopes in regional, exploratory geoscience investigations can help identify basement rock types under (shallow) cover, constrain surface processes (e.g. weathering, dispersion), and, potentially, recognise components of mineral systems. Furthermore, the resulting strontium isoscape and model derived therefrom can also be utilised in archaeological, paleontological and ecological studies that aim to investigate past and modern animal (including humans) dietary habits and migrations. The new spatial dataset is publicly available through the Geoscience Australia portal https://portal.ga.gov.au/.