From Geoscience Australia

Canning Basin AusAEM interpretation: hydrogen storage potential and multilayered mapping

ARCHIVED

Created 20/01/2025

Updated 20/01/2025

The discovery of strategically located salt structures, which meet the requirements for geological storage of hydrogen, is crucial to meeting Australia’s ambitions to become a major hydrogen producer, user and exporter. The use of the AusAEM airborne electromagnetic (AEM) survey’s conductivity sections, integrated with multidisciplinary geoscientific datasets, provides an excellent tool for investigating the near-surface effects of salt-related structures, and contributes to assessment of their potential for underground geological hydrogen storage. Currently known salt in the Canning Basin includes the Mallowa and Minjoo salt units. The Mallowa Salt is 600-800 m thick over an area of 150 × 200 km, where it lies within the depth range prospective for hydrogen storage (500-1800 m below surface), whereas the underlying Minjoo Salt is generally less than 100 m thick within its much smaller prospective depth zone. The modelled AEM sections penetrate to ~500 m from the surface, however, the salt rarely reaches this level. We therefore investigate the shallow stratigraphy of the AEM sections for evidence of the presence of underlying salt or for the influence of salt movement evident by disruption of near-surface electrically conductive horizons. These horizons occur in several stratigraphic units, mainly of Carboniferous to Cretaceous age. Only a few examples of localised folding/faulting have been noted in the shallow conductive stratigraphy that have potentially formed above isolated salt domes. Distinct zones of disruption within the shallow conductive stratigraphy generally occur along the margins of the present-day salt depocentre, resulting from dissolution and movement of salt during several stages. This study demonstrates the potential AEM has to assist in mapping salt-related structures, with implications for geological storage of hydrogen. In addition, this study produces a regional near-surface multilayered chronostratigraphic interpretation, which contributes to constructing a 3D national geological architecture, in support of environmental management, hazard mapping and resource exploration. Citation: Connors K. A., Wong S. C. T., Vilhena J. F. M., Rees S. W. & Feitz A. J., 2022. Canning Basin AusAEM interpretation: multilayered chronostratigraphic mapping and investigating hydrogen storage potential. In: Czarnota, K (ed.) Exploring for the Future: Extended Abstracts, Geoscience Australia, Canberra, https://dx.doi.org/10.26186/146376

Files and APIs

Tags

Additional Info

Field Value
Title Canning Basin AusAEM interpretation: hydrogen storage potential and multilayered mapping
Language eng
Licence notspecified
Landing Page https://devweb.dga.links.com.au/data/dataset/ad761cdc-d091-49a5-8525-5fa26ad5636c
Contact Point
Geoscience Australia
clientservices@ga.gov.au
Reference Period 08/04/2019
Geospatial Coverage http://www.ga.gov.au/place-names/PlaceDetails.jsp?submit1=GA1
Data Portal data.gov.au

Data Source

This dataset was originally found on data.gov.au "Canning Basin AusAEM interpretation: hydrogen storage potential and multilayered mapping". Please visit the source to access the original metadata of the dataset:
https://devweb.dga.links.com.au/data/dataset/canning-basin-ausaem-interpretation-hydrogen-storage-potential-and-multilayered-mapping

No duplicate datasets found.