Increasing the knowledge of ocean current patterns in Torres Strait region is of direct interest to indigenous communities and industries such as fisheries and shipping that operate in the region. Ocean circulation in Torres Strait influences nearly all aspects of the ecosystem, including sediment transport and turbidity patterns, primary production in the water column and bottom sediments, and recruitment patterns for organisms with pelagic phases in their life cycles.
This study is the first attempt to describe the water circulation and transport patterns across Torres Strait and adjacent gulfs and seas, on time scales from hours to years. It has also provided a framework for an embedded model describing sediment transport processes (described in Margvelashvili and Saint-Cast, 2006).
The circulation model incorporated realistic atmospheric and oceanographic forcing, including winds, waves, tides, and large-scale regional circulation taken from global model outputs. Simulations covered a hindcast period of eight years, allowing the tidal, seasonal, and interannual flow characteristics to be investigated. Results demonstrated that instantaneous current patterns were strongly dominated by the barotropic tide and its spring-neap cycle. However, longer-term transport through Torres Strait was mainly controlled by seasonal winds, which switch from north-westerly monsoon winds in summer to south-easterly trades in winter.
Model results were shown to be relatively insensitive to internal model parameters. However, model performance was strongly dependent on the quality of the forcing fields. For example, the prediction of low-frequency inner-shelf currents was improved substantially when temperature and salinity forcing based on the average seasonal climatologies was replaced by that from global model outputs. Uncertainties in the tidal component of the forcing also limited model skill, particularly predictions to the west of Cape York which were strongly dependent on the sealevels imposed along the open boundary in Gulf of Carpentaria.