From Geoscience Australia

Defining a chemostratigraphic framework for the Officer Basin. Inorganic and stable isotopic analyses of ten petroleum wells from Western Australia and South Australia

ARCHIVED

Created 20/01/2025

Updated 20/01/2025

As part of the Exploring for the Future (EFTF) program, a chemostratigraphic framework for the Officer Basin was developed that correlates inorganic geochemical sequences between exploration wells. The Officer Basin spans 525,000 km2 across Western Australia and South Australia, where it remains an unproven frontier basin which has seen little exploration. The objective of this study was to undertake a bulk rock elemental chemostratigraphy study on ten historic wells in order to better correlate the Neoproterozoic and Cambrian sections. Ten study wells, five from Western Australia and five from South Australia, were selected, and core (241) and cuttings (1,245) samples were acquired from their respective state core libraries. All samples were analysed using Inductively Coupled Plasma-Optical Emission Spectrometry (ICP-OES) and Inductively Coupled Plasma-Mass Spectrometry (ICP-MS), resulting in quantitative data for 50 elements. The approximate proportions of dolomite, clastics, halite and anhydrite for the samples were derived using stoichiometric geochemical calculations. Halite was identified in some formations based on mud log and wireline data, but was not always preserved in the cuttings samples. This non-detection of halite resulted in poor matches between the wireline gamma ray (GR) and ChemGR profiles for halite-bearing units in some wells (e.g. Dragoon-1, Mulyawara-1, and Yowalga-3). Key element and ratios utilised to subdivide the strata were principally chosen to highlight changes in sediment provenance, climatic, and organic matter changes, as they typically have the best correlation potential over a greater distance. The stratigraphy within the study wells has been subdivided into eight chemostratigraphic mega-sequences referred to as MS1 to MS8, which are further subdivided into a total of twenty-four sequences. Mega-Sequences MS1 to MS4 broadly correspond to the published Neoproterozoic–Cambrian Centralian Supersequences (CS1 to CS4). While overall there is broad agreement between these two schemes, there are also sections where the stratigraphy has been reassigned. For example, within Kutjara-1, the section previously assigned to Centralian Supersequence CS2, and equivalent to the Cryogenian Tapley Hill Formation, is assigned to Mega-Sequence MS3 (not MS2). Within MS4, the lithostratigraphically defined members of the Observatory Hill Formation show some significant variation to the chemostratigraphy, with differences occurring within sequences MS4-S3, MS4-S4 and MS4-S5 (e.g. Birksgate-1; Trainor Echo-1). Mega-Sequence MS6 encompasses the Mount Chandler Sandstone in Trainor Echo-1 in the east and the lithological lateral equivalent Lennis Sandstone in Lungkarta-1/ST1 and Yowalga-1 in the west; however, these two argillaceous sandstones are chemically distinct. Carbonate-containing samples from three wells (Birksgate-1, Yowalga-3, and Giles-1) were analysed for their δ13Ccarb and δ18Ocarb isotope signature using Isotope-Ratio Mass Spectrometry (IRMS), with results from the least altered carbonates being of sufficient quality to attempt preliminary age dating. Comparison of the Officer Basin isotope data to global type sections enabled tentative correlation of the Yowalga-3 carbonates to the Tonian and late Ediacaran, and the Birksgate-1 carbonates to the early Cambrian. The geochemistry analyses from 10 basin-wide wells provide a robust dataset that has been used to confirm which sections correlate within the existing lithostratigraphic and sequence stratigraphic framework. This study also highlights where further work needs to be undertaken to elucidate the spatial and temporal relationships of some Cryogenian and early Cambrian sections across the entire basin, given that rocks of these ages contain both potential source and reservoir rocks for petroleum generation and accumulation.

Files and APIs

Tags

Additional Info

Field Value
Title Defining a chemostratigraphic framework for the Officer Basin. Inorganic and stable isotopic analyses of ten petroleum wells from Western Australia and South Australia
Language eng
Licence notspecified
Landing Page https://devweb.dga.links.com.au/data/dataset/949ac4ea-44a2-4063-a69b-8d2e7463b665
Contact Point
Geoscience Australia
clientservices@ga.gov.au
Reference Period 01/03/2021 - 01/03/2022
Geospatial Coverage {"type": "Polygon", "coordinates": [[[120.6429, -33.1109], [130.6578, -33.1109], [130.6578, -25.0761], [120.6429, -25.0761], [120.6429, -33.1109]]]}
Data Portal data.gov.au

Data Source

This dataset was originally found on data.gov.au "Defining a chemostratigraphic framework for the Officer Basin. Inorganic and stable isotopic analyses of ten petroleum wells from Western Australia and South Australia". Please visit the source to access the original metadata of the dataset:
https://devweb.dga.links.com.au/data/dataset/defining-a-chemostratigraphic-framework-for-the-officer-basin-inorganic-and-stable-isotopic-ana

No duplicate datasets found.