This release consists of flux tower measurements of the exchange of energy and mass between the surface and the atmospheric boundary-layer using eddy covariance techniques. Data were processed using PyFluxPro (v3.5.0) as described by Isaac et al. (2017). PyFluxPro produces a final, gap-filled product with Net Ecosystem Exchange (NEE) partitioned into Gross Primary Productivity (GPP) and Ecosystem Respiration (ER).
The site is situated within a wetland that flooded seasonally. The principal vegetation is Oryza rufipogon, Pseudoraphis spinescens and Eleocharis dulcis. The elevation is approximately 4 m, with a neighbouring Bureau of Meteorology station recording 1411 mm mean annual precipitation. Maximum temperatures range from 31.3 °C (in June and July) to 35.6 °C (in October), while minimum temperatures range from 14.9 °C (in July) to 23.9 °C (in December and February). Maximum temperatures vary on a seasonal basis by approximately 4.3 °C and minimum temperatures by 9.0 °C.
The instrument mast is 15 m tall. Heat, water vapour and carbon dioxide measurements are taken using the open-path eddy flux technique. Temperature, humidity, wind speed, wind direction, rainfall, incoming and reflected shortwave radiation and net radiation are measured above the canopy. Soil heat fluxes are measured and soil moisture content is gathered using time domain reflectometry. Ancillary measurements being taken at the site include LAI, leaf-scale physiological properties (gas exchange, leaf isotope ratios, nitrogen and chlorophyll concentrations), vegetation optical properties and soil physical properties. Airborne-based remote sensing (Lidar and hyperspectral measurements) was carried out across the site in September 2008.